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=PFL 2 degrés de liberte - Régime libre

Coordonnées généralisées d’un systeme a deux
degrés de liberté

xi (1) et xp (1)
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=PFL 2 degrés de liberte - Régime libre

FORME MATRICIELLE DES EQUATIONS DU
MOUVEMENT

= Forme canonique matricielle du régime libre de

= I’oscillateur a deux degrés de liberté
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=PFL Régime libre - 2 degrés de liberté

EQUATIONS DU MOUVEMENT D’UN SYSTEME

SANS COUPLAGE INERTIEL
¢ Cy .
m m,
A A A A AN L5
gg&? i

Equations de Newton d’un oscillateur a deux
degrés de liberté sans couplage inertiel

m; x; = —k; xy —k3(x1 —xz)—-cl X —C3(Xl —xz)
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%) .X2 = _k2 Xr _k3(x2 _'xl)_c2 ).CZ _C3(X2 —xl)
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EQUATIONS DU MOUVEMENT D’UN SYSTEME
SANS COUPLAGE INERTIEL

Régime libre du systeme (sans couplage inertiel)

M, X2 +(C2 +C3)).62 +(k2 +k3)x2_ Cs 5‘1 == k3 X1 =1)
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=PFL Régime libre et conservatif - 2 degrés de liberté

Mx + Kx = 0 Solutions générales du régime libre de la forme
r m; x; + (kl + k3)x1 - ky x, = 0 (8.6) x; = A,ePt
i _,’_.Xj'2+ k3x1+ (k2+k3)X2 :O . x:Aept_)
» Xy = Azept

Intégration des solutions générales dans les
équations différentielles

Mp2AePt + KAePt = 0 > (Mp? + K)AePt = 0 > (Mp? + K)A = 0
det(Mp? + K) = 0
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=PFL Régime libre et conservatif - 2 degrés de liberté

Mx+Kx =0

x = AePt det(Mp? + K) = 0

my p* + ky + ks — ks

=0 (8.8)

—k3 (%) p2+k2+k3

. L. g . Solutions (1maginaires purs) de I’équation
Equation caractéristique ou équation aux
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pulsations propres caracteristique
p = fjo,
ki +ky kyt+k ki ky + ky ky + ky k
4 oo K TRy | Ky TK; | Ky t Ky K3 + K3 Ky |
p4 + p ( T ) + p— 0 (3.9) p, = tjw,



=PFL Régime libre et conservatif - 2 degrés de liberté

Mx+Kx =0

x = AePt det(Mp? + K) =0
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=PFL Régime libre et conservatif - 2 degrés de liberté

Solutions générales du régime libre

x| = All(Cl el®1? + D, e'jwl’)

+A, (G, ei®2t + D, e-ioat)

Solutions particulieres du régime libre X, = Ay (Cl el@1t + D, e'j“’l’)

- A 1 (0 . + A ( el@2t + D e'Ja’zf) 8.12
pour x; : Aj eI, A e A eI Ay e 1P 2 (G 3 (8.12)

pour x; 1 Agy eI”1!, Ay I, Ay 2!, Ay erion

Autre forme des solutions générales du régime
libre

x, = X cos(@,1 — @)+ X, cos(w,7 — ¢, )
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X, = Py X, Cos(wlt = €01) + Py X, cos(a)zt = §02)
(8.13)

1



=P~L Mode propre

NOTION DE MODE PROPRE

Définition du mode propre d’un systéme

Un mode propre est le mouvement du systéme lié
a une pulsation ou fréquence propre.

X = [,B;] X cos(wt —@q) + [,312] X, cos( wyt — @)

Forme matricielle des solutions générales du
régime libre
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x = By X, cos (@1 — ;) + B, X, cos (0,1 — ¢,)

€T mode 2eMe mode (8. 14)
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Forme matricielle des solutions générales du
régime libre

x = B X, cos(a)lt— (01)+ﬂ2 X, COS(wzf— 902)

1T mode

2€IMEC mode

(8.14)

NOTION DE VECTEUR MODAL

Vecteurs modaux ou vecteurs propres de

P =3

\

.
b1

3

I’oscillateur
s =1L sis
= 4 ' .
“ 1B

Orthogonalité des modes propres de 1’ oscillateur

ﬂlT[M] » =0

plLK|B, =0 (8.16)



=PFL Systemes symeétriques

Pulsations propres du systeme symétrique

a)lzz—k— w§=k+2k3

i 2 m m
L—»x, L——->x2

(8.20)

Rapports des amplitudes des solutions pour les

Equation caractéristique pour des systemes a symétrie deux pulsations propres

géométrique (my; = my, = m, k; = ky, = k)
k+k3 -—ma)12
2{k+ Kk . P = = +1
p* + p? ( 3)+k +22kk3 =0 (38.13) k3 8.21)
m m . 5 "
ﬁzz _ k + k3 m >, s o]

. » : R k
Solutions de 1’équation caractéristique ?

Vecteurs modaux de 1’ oscillateur symétrique

pr=-tB b g9

m m 1\ rlw
ﬂ1:{1> P =19 ¢
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=PFL Systemes symeétriques

Premier mode du systeme (oscillations en phase)

X = x; = Xjcos(wit— @) (8.22)
Solutions générales du régime libre du systéme

symeétrique
Deuxieme mode du systéme (oscillations en
x; = X, cos (a)lt = qol) + X, cos (a)zt = q02) opposition de phase)
)Cz = Xl COS(wlt—(Pl)—Xz COS(C!)2I—(P2) rx1 — X2 COS(wzl‘—(Dz)
v (8.23)
sz — —X2 COS((UQI— (pz)

Meécanique Vibratoire - SGM Bab - G. Villanueva



=PFL Systemes symeétriques

O

(1) Premier mode du systeme (oscillations en phase)

X1 = Xy = X COS(C()II — @1) (8.22)

Deuxieme mode du systeme (oscillations en
opposition de phase)

\/
(1) j

5
]

Xz COS(CUQI — @2)
9 (8.23)
— X, cos (wy1 — ¢,)

S
b9
Il
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